
apicore Documentation
Release 1.0

dev@meez.io

Jan 07, 2018

Contents

1 Features 3

2 Example 5

3 Configuration 7

4 OpenAPI 3.0 9

5 APIs 11
5.1 api . 11
5.2 Authorization . 24
5.3 cache . 24
5.4 config . 25
5.5 Exceptions . 25
5.6 Lang . 26
5.7 Logger . 27

i

ii

apicore Documentation, Release 1.0

Set of core libraries usefull for building REST API and Microservices based on Flask.

The code is open source, release under MIT and written in Python 3.

apt-get install build-essential python3-dev
pip install apicore

Contents 1

apicore Documentation, Release 1.0

2 Contents

CHAPTER 1

Features

• Cross-origin resource sharing (CORS) ready

• Data caching with redis server or direct in memory

• Configuration file loader

• A simple Logger

• Raise exception conform to HTTP status codes

• Authorization using JSON Web Token(JWT) issued from an OpenID Connect provider

• OpenAPI 3.0 specification embedded with Swagger UI

3

apicore Documentation, Release 1.0

4 Chapter 1. Features

CHAPTER 2

Example

#!/usr/bin/env python

from apicore import api, Logger, config, Http409Exception, Authorization

Logger.info("Starting {} API Server...".format(config.app_name))

@api.route('/error/')
def error():

"""
summary: Raise an execption
responses:

409:
description: Conflict

"""
raise Http409Exception()

@api.route('/jwt/')
def jwt():

userProfile = Authorization()
print(userProfile);
return "JWT Valid!"

if __name__ == "__main__":
api.debug = config.debug
api.run()

5

apicore Documentation, Release 1.0

6 Chapter 2. Example

CHAPTER 3

Configuration

Configuration is set in conf/config.yaml file (see apicore.config.Config).

Name Default
value

Description

app_name “Meezio” Application’s name.
debug True Active debug mode.
iss-
Whitelist

None Whitelist for OIDC issuers. If not set, every issuers are allowed except ones from
blacklist.

issBlack-
list

None Blacklist for OIDC issuers. synaxte : same as ‘iss’ claim in the JWT.

prefix “” Add a prefix to URL path (ie: “/api”).
redis None Redis server used for caching data : redis://:password@localhost:6379/0. If not set

use memory.
smtp_host “localhost” SMTP server used to sent email.
swag-
ger_ui

“/” Relative URL path to embedded Swagger UI (prefix + swagger_ui).

tokenEx-
pire

True Check ‘exp’ claim in JWT to validate token.

7

apicore Documentation, Release 1.0

8 Chapter 3. Configuration

CHAPTER 4

OpenAPI 3.0

• See specification for syntax.

• Document route’s methods with Operation Object using yaml syntax.

• Document your API in conf/openapi.yaml file.

• Access your documentation through a python dictionary : api.oas.specs.

• Your spec is available at http[s]://<hostname>/openapi.json.

• Default path to http[s]://<hostname>/ to see your spec with Swagger UI (set swagger_ui in conf/
config.yaml to change path)

• Full exemple :

@api.route('/sellers/<idseller>/', methods=['GET', 'PUT'])
def seller(idseller):

"""
description: "Path Item Object" level here, only common_responses is added to

→˓OpenAPi specification. Next level are "Operation Object".
parameters:

- name: idseller
in: path
description: uuid of seller
required: true
type: string
format: uuid

common_responses:
400:
description: Invalid request
401:
description: Authentification required

403:
description: Ressource access denied

500:
description: Server internal error

9

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#operationObject

apicore Documentation, Release 1.0

tags:
- profile

summary: Find a seller profile by ID
responses:

200:
description: Success
content:
application/json:
schema:
$ref: '#/components/schemas/Seller'

404:
description: Ressource does not exist

406:
description: Nothing to send maching Access-* headers

tags:

- profile
summary: Update seller profile
requestBody:

content:
application/json:
schema:
$ref: '#/components/schemas/Seller'

required: true
responses:

200:
description: Success

"""
pass

print(api.oas.spec)

10 Chapter 4. OpenAPI 3.0

CHAPTER 5

APIs

5.1 api

api is the application, instance of apicore.api.API inherited from flask.Flask. It handle Cross-origin
resource sharing (CORS) and JSON responde message (instead of HTML).

class apicore.api.API(import_name)

add_template_filter(f, name=None)
Register a custom template filter. Works exactly like the template_filter() decorator.

Parameters name – the optional name of the filter, otherwise the function name will be used.

add_template_global(f, name=None)
Register a custom template global function. Works exactly like the template_global() decorator.

New in version 0.10.

Parameters name – the optional name of the global function, otherwise the function name will
be used.

add_template_test(f, name=None)
Register a custom template test. Works exactly like the template_test() decorator.

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

add_url_rule(rule, endpoint=None, view_func=None, **options)
Connects a URL rule. Works exactly like the route() decorator. If a view_func is provided it will be
registered with the endpoint.

Basically this example:

@app.route('/')
def index():

pass

11

apicore Documentation, Release 1.0

Is equivalent to the following:

def index():
pass

app.add_url_rule('/', 'index', index)

If the view_func is not provided you will need to connect the endpoint to a view function like so:

app.view_functions['index'] = index

Internally route() invokes add_url_rule() so if you want to customize the behavior via subclass-
ing you only need to change this method.

For more information refer to url-route-registrations.

Changed in version 0.2: view_func parameter added.

Changed in version 0.6: OPTIONS is added automatically as method.

Parameters

• rule – the URL rule as string

• endpoint – the endpoint for the registered URL rule. Flask itself assumes the name of
the view function as endpoint

• view_func – the function to call when serving a request to the provided endpoint

• options – the options to be forwarded to the underlying Rule object. A change to
Werkzeug is handling of method options. methods is a list of methods this rule should be
limited to (GET, POST etc.). By default a rule just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly added and handled by the standard request
handling.

after_request(f)
Register a function to be run after each request.

Your function must take one parameter, an instance of response_class and return a new response
object or the same (see process_response()).

As of Flask 0.7 this function might not be executed at the end of the request in case an unhandled exception
occurred.

app_context()
Binds the application only. For as long as the application is bound to the current context the flask.
current_app points to that application. An application context is automatically created when a request
context is pushed if necessary.

Example usage:

with app.app_context():
...

New in version 0.9.

app_ctx_globals_class
alias of _AppCtxGlobals

auto_find_instance_path()
Tries to locate the instance path if it was not provided to the constructor of the application class. It will
basically calculate the path to a folder named instance next to your main file or the package.

New in version 0.8.

12 Chapter 5. APIs

apicore Documentation, Release 1.0

before_first_request(f)
Registers a function to be run before the first request to this instance of the application.

The function will be called without any arguments and its return value is ignored.

New in version 0.8.

before_request(f)
Registers a function to run before each request.

The function will be called without any arguments. If the function returns a non-None value, it’s handled
as if it was the return value from the view and further request handling is stopped.

config_class
alias of Config

context_processor(f)
Registers a template context processor function.

create_global_jinja_loader()
Creates the loader for the Jinja2 environment. Can be used to override just the loader and keeping the rest
unchanged. It’s discouraged to override this function. Instead one should override the jinja_loader()
function instead.

The global loader dispatches between the loaders of the application and the individual blueprints.

New in version 0.7.

create_jinja_environment()
Creates the Jinja2 environment based on jinja_options and select_jinja_autoescape().
Since 0.7 this also adds the Jinja2 globals and filters after initialization. Override this function to customize
the behavior.

New in version 0.5.

Changed in version 0.11: Environment.auto_reload set in accordance with
TEMPLATES_AUTO_RELOAD configuration option.

create_url_adapter(request)
Creates a URL adapter for the given request. The URL adapter is created at a point where the request
context is not yet set up so the request is passed explicitly.

New in version 0.6.

Changed in version 0.9: This can now also be called without a request object when the URL adapter is
created for the application context.

dispatch_request()
Does the request dispatching. Matches the URL and returns the return value of the view or error handler.
This does not have to be a response object. In order to convert the return value to a proper response object,
call make_response().

Changed in version 0.7: This no longer does the exception handling, this code was moved to the new
full_dispatch_request().

do_teardown_appcontext(exc=<object object>)
Called when an application context is popped. This works pretty much the same as
do_teardown_request() but for the application context.

New in version 0.9.

do_teardown_request(exc=<object object>)
Called after the actual request dispatching and will call every as teardown_request() decorated

5.1. api 13

apicore Documentation, Release 1.0

function. This is not actually called by the Flask object itself but is always triggered when the request
context is popped. That way we have a tighter control over certain resources under testing environments.

Changed in version 0.9: Added the exc argument. Previously this was always using the current exception
information.

endpoint(endpoint)
A decorator to register a function as an endpoint. Example:

@app.endpoint('example.endpoint')
def example():

return "example"

Parameters endpoint – the name of the endpoint

errorhandler(code_or_exception)
A decorator that is used to register a function give a given error code. Example:

@app.errorhandler(404)
def page_not_found(error):

return 'This page does not exist', 404

You can also register handlers for arbitrary exceptions:

@app.errorhandler(DatabaseError)
def special_exception_handler(error):

return 'Database connection failed', 500

You can also register a function as error handler without using the errorhandler() decorator. The
following example is equivalent to the one above:

def page_not_found(error):
return 'This page does not exist', 404

app.error_handler_spec[None][404] = page_not_found

Setting error handlers via assignments to error_handler_spec however is discouraged as it requires
fiddling with nested dictionaries and the special case for arbitrary exception types.

The first None refers to the active blueprint. If the error handler should be application wide None shall be
used.

New in version 0.7: Use register_error_handler() instead of modifying
error_handler_spec directly, for application wide error handlers.

New in version 0.7: One can now additionally also register custom exception types that do not necessarily
have to be a subclass of the HTTPException class.

Parameters code – the code as integer for the handler

full_dispatch_request()
Dispatches the request and on top of that performs request pre and postprocessing as well as HTTP excep-
tion catching and error handling.

New in version 0.7.

get_send_file_max_age(filename)
Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from the configuration of
current_app.

14 Chapter 5. APIs

apicore Documentation, Release 1.0

Static file functions such as send_from_directory() use this function, and send_file() calls
this function on current_app when the given cache_timeout is None. If a cache_timeout is given in
send_file(), that timeout is used; otherwise, this method is called.

This allows subclasses to change the behavior when sending files based on the filename. For example, to
set the cache timeout for .js files to 60 seconds:

class MyFlask(flask.Flask):
def get_send_file_max_age(self, name):

if name.lower().endswith('.js'):
return 60

return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

got_first_request
This attribute is set to True if the application started handling the first request.

New in version 0.8.

handle_exception(e)
Default exception handling that kicks in when an exception occurs that is not caught. In debug mode the
exception will be re-raised immediately, otherwise it is logged and the handler for a 500 internal server
error is used. If no such handler exists, a default 500 internal server error message is displayed.

New in version 0.3.

handle_http_exception(e)
Handles an HTTP exception. By default this will invoke the registered error handlers and fall back to
returning the exception as response.

New in version 0.3.

handle_url_build_error(error, endpoint, values)
Handle BuildError on url_for().

handle_user_exception(e)
This method is called whenever an exception occurs that should be handled. A special case are
HTTPExceptions which are forwarded by this function to the handle_http_exception()
method. This function will either return a response value or reraise the exception with the same trace-
back.

New in version 0.7.

has_static_folder
This is True if the package bound object’s container has a folder for static files.

New in version 0.5.

init_jinja_globals()
Deprecated. Used to initialize the Jinja2 globals.

New in version 0.5.

Changed in version 0.7: This method is deprecated with 0.7. Override
create_jinja_environment() instead.

inject_url_defaults(endpoint, values)
Injects the URL defaults for the given endpoint directly into the values dictionary passed. This is used
internally and automatically called on URL building.

New in version 0.7.

5.1. api 15

apicore Documentation, Release 1.0

iter_blueprints()
Iterates over all blueprints by the order they were registered.

New in version 0.11.

jinja_env
The Jinja2 environment used to load templates.

jinja_environment
alias of Environment

jinja_loader
The Jinja loader for this package bound object.

New in version 0.5.

json_decoder
alias of JSONDecoder

json_encoder
alias of JSONEncoder

log_exception(exc_info)
Logs an exception. This is called by handle_exception() if debugging is disabled and right before
the handler is called. The default implementation logs the exception as error on the logger.

New in version 0.8.

logger
A logging.Logger object for this application. The default configuration is to log to stderr if the
application is in debug mode. This logger can be used to (surprise) log messages. Here some examples:

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

New in version 0.3.

make_config(instance_relative=False)
Used to create the config attribute by the Flask constructor. The instance_relative parameter is passed in
from the constructor of Flask (there named instance_relative_config) and indicates if the config should be
relative to the instance path or the root path of the application.

New in version 0.8.

make_default_options_response()
This method is called to create the default OPTIONS response. This can be changed through subclassing
to change the default behavior of OPTIONS responses.

New in version 0.7.

make_null_session()
Creates a new instance of a missing session. Instead of overriding this method we recommend replacing
the session_interface.

New in version 0.7.

make_response(rv)
Converts the return value from a view function to a real response object that is an instance of
response_class.

The following types are allowed for rv:

16 Chapter 5. APIs

https://docs.python.org/2/library/logging.html#logging.Logger

apicore Documentation, Release 1.0

response_class the object is returned unchanged
str a response object is created with the string as body
unicode a response object is created with the string encoded to utf-8 as body
a WSGI function the function is called as WSGI application and buffered as response

object
tuple A tuple in the form (response, status, headers) or

(response, headers) where response is any of the types de-
fined here, status is a string or an integer and headers is a list or a
dictionary with header values.

Parameters rv – the return value from the view function

Changed in version 0.9: Previously a tuple was interpreted as the arguments for the response object.

make_shell_context()
Returns the shell context for an interactive shell for this application. This runs all the registered shell
context processors.

New in version 0.11.

name
The name of the application. This is usually the import name with the difference that it’s guessed from the
run file if the import name is main. This name is used as a display name when Flask needs the name of the
application. It can be set and overridden to change the value.

New in version 0.8.

open_instance_resource(resource, mode=’rb’)
Opens a resource from the application’s instance folder (instance_path). Otherwise works like
open_resource(). Instance resources can also be opened for writing.

Parameters

• resource – the name of the resource. To access resources within subfolders use forward
slashes as separator.

• mode – resource file opening mode, default is ‘rb’.

open_resource(resource, mode=’rb’)
Opens a resource from the application’s resource folder. To see how this works, consider the following
folder structure:

/myapplication.py
/schema.sql
/static

/style.css
/templates

/layout.html
/index.html

If you want to open the schema.sql file you would do the following:

with app.open_resource('schema.sql') as f:
contents = f.read()
do_something_with(contents)

Parameters

5.1. api 17

https://docs.python.org/2/library/functions.html#str

apicore Documentation, Release 1.0

• resource – the name of the resource. To access resources within subfolders use forward
slashes as separator.

• mode – resource file opening mode, default is ‘rb’.

open_session(request)
Creates or opens a new session. Default implementation stores all session data in a signed cookie. This
requires that the secret_key is set. Instead of overriding this method we recommend replacing the
session_interface.

Parameters request – an instance of request_class.

preprocess_request()
Called before the actual request dispatching and will call each before_request() decorated function,
passing no arguments. If any of these functions returns a value, it’s handled as if it was the return value
from the view and further request handling is stopped.

This also triggers the url_value_processor() functions before the actual before_request()
functions are called.

preserve_context_on_exception
Returns the value of the PRESERVE_CONTEXT_ON_EXCEPTION configuration value in case it’s set,
otherwise a sensible default is returned.

New in version 0.7.

process_response(response)
Can be overridden in order to modify the response object before it’s sent to the WSGI server. By default
this will call all the after_request() decorated functions.

Changed in version 0.5: As of Flask 0.5 the functions registered for after request execution are called in
reverse order of registration.

Parameters response – a response_class object.

Returns a new response object or the same, has to be an instance of response_class.

propagate_exceptions
Returns the value of the PROPAGATE_EXCEPTIONS configuration value in case it’s set, otherwise a
sensible default is returned.

New in version 0.7.

raise_routing_exception(request)
Exceptions that are recording during routing are reraised with this method. During debug we are not
reraising redirect requests for non GET, HEAD, or OPTIONS requests and we’re raising a different error
instead to help debug situations.

Internal

register_blueprint(blueprint, **options)
Register a blueprint on the application. For information about blueprints head over to blueprints.

The blueprint name is passed in as the first argument. Options are passed as additional keyword arguments
and forwarded to blueprints in an “options” dictionary.

Parameters

• subdomain – set a subdomain for the blueprint

• url_prefix – set the prefix for all URLs defined on the blueprint. (url_prefix='/
<lang code>')

18 Chapter 5. APIs

apicore Documentation, Release 1.0

• url_defaults – a dictionary with URL defaults that is added to each and every URL
defined with this blueprint

• static_folder – add a static folder to urls in this blueprint

• static_url_path – add a static url path to urls in this blueprint

• template_folder – set an alternate template folder

• root_path – set an alternate root path for this blueprint

New in version 0.7.

register_error_handler(code_or_exception, f)
Alternative error attach function to the errorhandler() decorator that is more straightforward to use
for non decorator usage.

New in version 0.7.

request_class
alias of Request

request_context(environ)
Creates a RequestContext from the given environment and binds it to the current context. This must
be used in combination with the with statement because the request is only bound to the current context
for the duration of the with block.

Example usage:

with app.request_context(environ):
do_something_with(request)

The object returned can also be used without the with statement which is useful for working in the shell.
The example above is doing exactly the same as this code:

ctx = app.request_context(environ)
ctx.push()
try:

do_something_with(request)
finally:

ctx.pop()

Changed in version 0.3: Added support for non-with statement usage and with statement is now passed
the ctx object.

Parameters environ – a WSGI environment

response_class
alias of Response

run(host=None, port=None, debug=None, **options)
Runs the application on a local development server.

Do not use run() in a production setting. It is not intended to meet security and performance requirements
for a production server. Instead, see deployment for WSGI server recommendations.

If the debug flag is set the server will automatically reload for code changes and show a debugger in case
an exception happened.

If you want to run the application in debug mode, but disable the code execution on the interactive debug-
ger, you can pass use_evalex=False as parameter. This will keep the debugger’s traceback screen
active, but disable code execution.

5.1. api 19

apicore Documentation, Release 1.0

It is not recommended to use this function for development with automatic reloading as this is badly
supported. Instead you should be using the flask command line script’s run support.

Keep in Mind

Flask will suppress any server error with a generic error page unless it is in debug mode. As such to enable
just the interactive debugger without the code reloading, you have to invoke run() with debug=True
and use_reloader=False. Setting use_debugger to True without being in debug mode won’t
catch any exceptions because there won’t be any to catch.

Changed in version 0.10: The default port is now picked from the SERVER_NAME variable.

Parameters

• host – the hostname to listen on. Set this to '0.0.0.0' to have the server available
externally as well. Defaults to '127.0.0.1'.

• port – the port of the webserver. Defaults to 5000 or the port defined in the
SERVER_NAME config variable if present.

• debug – if given, enable or disable debug mode. See debug.

• options – the options to be forwarded to the underlying Werkzeug server. See
werkzeug.serving.run_simple() for more information.

save_session(session, response)
Saves the session if it needs updates. For the default implementation, check open_session(). Instead
of overriding this method we recommend replacing the session_interface.

Parameters

• session – the session to be saved (a SecureCookie object)

• response – an instance of response_class

select_jinja_autoescape(filename)
Returns True if autoescaping should be active for the given template name. If no template name is given,
returns True.

New in version 0.5.

send_static_file(filename)
Function used internally to send static files from the static folder to the browser.

New in version 0.5.

shell_context_processor(f)
Registers a shell context processor function.

New in version 0.11.

should_ignore_error(error)
This is called to figure out if an error should be ignored or not as far as the teardown system is concerned.
If this function returns True then the teardown handlers will not be passed the error.

New in version 0.10.

static_folder
The absolute path to the configured static folder.

teardown_appcontext(f)
Registers a function to be called when the application context ends. These functions are typically also
called when the request context is popped.

20 Chapter 5. APIs

apicore Documentation, Release 1.0

Example:

ctx = app.app_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown functions are called just before the app
context moves from the stack of active contexts. This becomes relevant if you are using such constructs in
tests.

Since a request context typically also manages an application context it would also be called when you
pop a request context.

When a teardown function was called because of an exception it will be passed an error object.

The return values of teardown functions are ignored.

New in version 0.9.

teardown_request(f)
Register a function to be run at the end of each request, regardless of whether there was an exception or
not. These functions are executed when the request context is popped, even if not an actual request was
performed.

Example:

ctx = app.test_request_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown functions are called just before the
request context moves from the stack of active contexts. This becomes relevant if you are using such
constructs in tests.

Generally teardown functions must take every necessary step to avoid that they will fail. If they do execute
code that might fail they will have to surround the execution of these code by try/except statements and
log occurring errors.

When a teardown function was called because of a exception it will be passed an error object.

The return values of teardown functions are ignored.

Debug Note

In debug mode Flask will not tear down a request on an exception immediately. Instead it will keep
it alive so that the interactive debugger can still access it. This behavior can be controlled by the
PRESERVE_CONTEXT_ON_EXCEPTION configuration variable.

template_filter(name=None)
A decorator that is used to register custom template filter. You can specify a name for the filter, otherwise
the function name will be used. Example:

@app.template_filter()
def reverse(s):

return s[::-1]

Parameters name – the optional name of the filter, otherwise the function name will be used.

5.1. api 21

apicore Documentation, Release 1.0

template_global(name=None)
A decorator that is used to register a custom template global function. You can specify a name for the
global function, otherwise the function name will be used. Example:

@app.template_global()
def double(n):

return 2 * n

New in version 0.10.

Parameters name – the optional name of the global function, otherwise the function name will
be used.

template_test(name=None)
A decorator that is used to register custom template test. You can specify a name for the test, otherwise
the function name will be used. Example:

@app.template_test()
def is_prime(n):

if n == 2:
return True

for i in range(2, int(math.ceil(math.sqrt(n))) + 1):
if n % i == 0:

return False
return True

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

test_client(use_cookies=True, **kwargs)
Creates a test client for this application. For information about unit testing head over to testing.

Note that if you are testing for assertions or exceptions in your application code, you must set app.
testing = True in order for the exceptions to propagate to the test client. Otherwise, the exception
will be handled by the application (not visible to the test client) and the only indication of an AssertionError
or other exception will be a 500 status code response to the test client. See the testing attribute. For
example:

app.testing = True
client = app.test_client()

The test client can be used in a with block to defer the closing down of the context until the end of the
with block. This is useful if you want to access the context locals for testing:

with app.test_client() as c:
rv = c.get('/?vodka=42')
assert request.args['vodka'] == '42'

Additionally, you may pass optional keyword arguments that will then be passed to the application’s
test_client_class constructor. For example:

from flask.testing import FlaskClient

class CustomClient(FlaskClient):
def __init__(self, authentication=None, *args, **kwargs):

FlaskClient.__init__(*args, **kwargs)
self._authentication = authentication

22 Chapter 5. APIs

apicore Documentation, Release 1.0

app.test_client_class = CustomClient
client = app.test_client(authentication='Basic')

See FlaskClient for more information.

Changed in version 0.4: added support for with block usage for the client.

New in version 0.7: The use_cookies parameter was added as well as the ability to override the client to
be used by setting the test_client_class attribute.

Changed in version 0.11: Added **kwargs to support passing additional keyword arguments to the con-
structor of test_client_class.

test_request_context(*args, **kwargs)
Creates a WSGI environment from the given values (see werkzeug.test.EnvironBuilder for
more information, this function accepts the same arguments).

trap_http_exception(e)
Checks if an HTTP exception should be trapped or not. By default this will return False for all exceptions
except for a bad request key error if TRAP_BAD_REQUEST_ERRORS is set to True. It also returns True
if TRAP_HTTP_EXCEPTIONS is set to True.

This is called for all HTTP exceptions raised by a view function. If it returns True for any exception the
error handler for this exception is not called and it shows up as regular exception in the traceback. This is
helpful for debugging implicitly raised HTTP exceptions.

New in version 0.8.

try_trigger_before_first_request_functions()
Called before each request and will ensure that it triggers the before_first_request_funcs and
only exactly once per application instance (which means process usually).

Internal

update_template_context(context)
Update the template context with some commonly used variables. This injects request, session, config and
g into the template context as well as everything template context processors want to inject. Note that the
as of Flask 0.6, the original values in the context will not be overridden if a context processor decides to
return a value with the same key.

Parameters context – the context as a dictionary that is updated in place to add extra vari-
ables.

url_defaults(f)
Callback function for URL defaults for all view functions of the application. It’s called with the endpoint
and values and should update the values passed in place.

url_rule_class
alias of Rule

url_value_preprocessor(f)
Registers a function as URL value preprocessor for all view functions of the application. It’s called before
the view functions are called and can modify the url values provided.

wsgi_app(environ, start_response)
The actual WSGI application. This is not implemented in __call__ so that middlewares can be applied
without losing a reference to the class. So instead of doing this:

app = MyMiddleware(app)

It’s a better idea to do this instead:

5.1. api 23

apicore Documentation, Release 1.0

app.wsgi_app = MyMiddleware(app.wsgi_app)

Then you still have the original application object around and can continue to call methods on it.

Changed in version 0.7: The behavior of the before and after request callbacks was changed under error
conditions and a new callback was added that will always execute at the end of the request, independent
on if an error occurred or not. See callbacks-and-errors.

Parameters

• environ – a WSGI environment

• start_response – a callable accepting a status code, a list of headers and an optional
exception context to start the response

5.2 Authorization

apicore.Authorization()
Check that JSON Web Token (JWT) passed through Authorization header or through query parameter
‘token’ is valid. The JWT MUST be provided by an OpenID Connect provider and be passed as a Bearer token
:

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
→˓eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
→˓TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

To validate signature, the publics keys are retrieved by fetching the issuer URL at /.well-known/
openid-configuration and are store in cache for further use.

Returns The claims contained in the JWT body.

Return type dict

Raises

• apicore.Http401Exception – If they is no Authorization header.

• apicore.Http403Exception – If Authorization header is not valid.

5.3 cache

cache is an instance of apicore.cache.Cache

class apicore.cache.Cache
Cache for the application. To use by importing the instance :

exemple:

from apicore import cache

key = "my_data"
date = {"color": "orange", "flag": True}
cache.set(key, data)
print(cache.get(key))

24 Chapter 5. APIs

https://docs.python.org/2/library/stdtypes.html#dict

apicore Documentation, Release 1.0

Note: If redis URI is configured the cache is store in redis server, otherwise it is cache in memory.

delete(key)

Parameters key (str) – the key referencing the data to remove

get(key)

Parameters key (str) – the key referencing the data

set(key, value, expire=None)

Parameters

• key (str) – the key referencing the data

• value – the data to store in cache

• expire (integer) – Expire at a given timestamp in seconde.

5.4 config

config is an instance of apicore.config.Config

class apicore.config.Config(configFile=’conf/config.yaml’)
Manage configuration values. To use by importing the instance :

exemple:

from apicore import config

print(config.server_name)

load(confFile=’config.yaml’)
Load config file from filesystem.

Parameters string (str) – Path to config file.

5.5 Exceptions

class apicore.Http400Exception(description=None, verbose=False)
Create a 400 Bad Request exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

class apicore.Http401Exception(description=None, verbose=False)
Create a 401 Unauthorized exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

class apicore.Http402Exception(description=None, verbose=False)

5.4. config 25

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

apicore Documentation, Release 1.0

class apicore.Http403Exception(description=None, verbose=False)
Create a 403 Forbidden exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

class apicore.Http404Exception(description=None, verbose=False)
Create a 404 Not Found exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

class apicore.Http406Exception(description=None, verbose=False)
Create a 406 Not Acceptable exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

class apicore.Http409Exception(description=None, verbose=False)
Create a 409 Conflict exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

class apicore.Http500Exception(description=None, verbose=False)
Create a 500 Internal Server Error exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

class apicore.Http501Exception(description=None, verbose=False)
Create a 501 Not Implemented exception.

Parameters

• infos (str) – A message describing the error.

• verbose (boolean) – True to send infos in HTTP response.

5.6 Lang

class apicore.Lang

static best_match(available_languages, default=None)
Determine best language from list of available languages and from Accept-Language Header.

Parameters

• available_languages (list) – List of available languages to match with.

26 Chapter 5. APIs

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

apicore Documentation, Release 1.0

• default (str) – Language returned when no match found.

Return str The best matching language or None if no matching.

5.7 Logger

class apicore.Logger

static error(string)
Print error message to stderr.

Parameters string (str) – message to print.

static info(string)
Print information message to stdout.

Parameters string (str) – message to print.

Todo:

• i18n HTTP response messages.

• Configure using command line argument and environnement variables which override configuration file.

5.7. Logger 27

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

apicore Documentation, Release 1.0

28 Chapter 5. APIs

Index

A
add_template_filter() (apicore.api.API method), 11
add_template_global() (apicore.api.API method), 11
add_template_test() (apicore.api.API method), 11
add_url_rule() (apicore.api.API method), 11
after_request() (apicore.api.API method), 12
API (class in apicore.api), 11
app_context() (apicore.api.API method), 12
app_ctx_globals_class (apicore.api.API attribute), 12
Authorization() (in module apicore), 24
auto_find_instance_path() (apicore.api.API method), 12

B
before_first_request() (apicore.api.API method), 12
before_request() (apicore.api.API method), 13
best_match() (apicore.Lang static method), 26

C
Cache (class in apicore.cache), 24
Config (class in apicore.config), 25
config_class (apicore.api.API attribute), 13
context_processor() (apicore.api.API method), 13
create_global_jinja_loader() (apicore.api.API method),

13
create_jinja_environment() (apicore.api.API method), 13
create_url_adapter() (apicore.api.API method), 13

D
delete() (apicore.cache.Cache method), 25
dispatch_request() (apicore.api.API method), 13
do_teardown_appcontext() (apicore.api.API method), 13
do_teardown_request() (apicore.api.API method), 13

E
endpoint() (apicore.api.API method), 14
error() (apicore.Logger static method), 27
errorhandler() (apicore.api.API method), 14

F
full_dispatch_request() (apicore.api.API method), 14

G
get() (apicore.cache.Cache method), 25
get_send_file_max_age() (apicore.api.API method), 14
got_first_request (apicore.api.API attribute), 15

H
handle_exception() (apicore.api.API method), 15
handle_http_exception() (apicore.api.API method), 15
handle_url_build_error() (apicore.api.API method), 15
handle_user_exception() (apicore.api.API method), 15
has_static_folder (apicore.api.API attribute), 15
Http400Exception (class in apicore), 25
Http401Exception (class in apicore), 25
Http402Exception (class in apicore), 25
Http403Exception (class in apicore), 25
Http404Exception (class in apicore), 26
Http406Exception (class in apicore), 26
Http409Exception (class in apicore), 26
Http500Exception (class in apicore), 26
Http501Exception (class in apicore), 26

I
info() (apicore.Logger static method), 27
init_jinja_globals() (apicore.api.API method), 15
inject_url_defaults() (apicore.api.API method), 15
iter_blueprints() (apicore.api.API method), 15

J
jinja_env (apicore.api.API attribute), 16
jinja_environment (apicore.api.API attribute), 16
jinja_loader (apicore.api.API attribute), 16
json_decoder (apicore.api.API attribute), 16
json_encoder (apicore.api.API attribute), 16

L
Lang (class in apicore), 26

29

apicore Documentation, Release 1.0

load() (apicore.config.Config method), 25
log_exception() (apicore.api.API method), 16
logger (apicore.api.API attribute), 16
Logger (class in apicore), 27

M
make_config() (apicore.api.API method), 16
make_default_options_response() (apicore.api.API

method), 16
make_null_session() (apicore.api.API method), 16
make_response() (apicore.api.API method), 16
make_shell_context() (apicore.api.API method), 17

N
name (apicore.api.API attribute), 17

O
open_instance_resource() (apicore.api.API method), 17
open_resource() (apicore.api.API method), 17
open_session() (apicore.api.API method), 18

P
preprocess_request() (apicore.api.API method), 18
preserve_context_on_exception (apicore.api.API at-

tribute), 18
process_response() (apicore.api.API method), 18
propagate_exceptions (apicore.api.API attribute), 18

R
raise_routing_exception() (apicore.api.API method), 18
register_blueprint() (apicore.api.API method), 18
register_error_handler() (apicore.api.API method), 19
request_class (apicore.api.API attribute), 19
request_context() (apicore.api.API method), 19
response_class (apicore.api.API attribute), 19
run() (apicore.api.API method), 19

S
save_session() (apicore.api.API method), 20
select_jinja_autoescape() (apicore.api.API method), 20
send_static_file() (apicore.api.API method), 20
set() (apicore.cache.Cache method), 25
shell_context_processor() (apicore.api.API method), 20
should_ignore_error() (apicore.api.API method), 20
static_folder (apicore.api.API attribute), 20

T
teardown_appcontext() (apicore.api.API method), 20
teardown_request() (apicore.api.API method), 21
template_filter() (apicore.api.API method), 21
template_global() (apicore.api.API method), 22
template_test() (apicore.api.API method), 22
test_client() (apicore.api.API method), 22

test_request_context() (apicore.api.API method), 23
trap_http_exception() (apicore.api.API method), 23
try_trigger_before_first_request_functions() (api-

core.api.API method), 23

U
update_template_context() (apicore.api.API method), 23
url_defaults() (apicore.api.API method), 23
url_rule_class (apicore.api.API attribute), 23
url_value_preprocessor() (apicore.api.API method), 23

W
wsgi_app() (apicore.api.API method), 23

30 Index

	Features
	Example
	Configuration
	OpenAPI 3.0
	APIs
	api
	Authorization
	cache
	config
	Exceptions
	Lang
	Logger

